

Class Outline	
1. Overview	
1.1 Continuous-wave sources	
1.2 Long-pulse sources	
1.3 Short-pulse sources	
1.4 Compact sources	
2. Beam characteristics	
2.1 Beam time structure	
2.2 Primary parameters	
2.3 Beam evolution parameters	
3. Beam loss & activation	
4. Major accelerator systems	
4.1 Linac systems	
4.2 Ring systems	
CP85	2

ESS parameters										
Front end (NC) Superconducting linac Upgrade										
Source RFQ DTL SSR TSR Elliptical-1 Elliptical-2 Transport										
28 m 290 m 100 m										
	System	т	Fnorgy	Freq	ß	Longth	-			
	System	[K]	[MeV]	[MHz]	v/c	[m]				
	Source	300	0.075	_	_	2.5				
	LEBT	300	_	_	_	1.1				
	RFQ	300	3	352.2	_	4.0				
	MEBT	300	_	352.2	_	1.1				
	DTL	300	50	352.2	_	19.2				
	SSR	4	80	352.2	0.35	23.3				
	TSR	4	200	352.2	0.50	48.8				
	Ellipt-1	2	660	704.4	0.65	61.7				
CPSS	Ellipt-2	2	2500	704.4	0.92	154.0	16			

SNS budget (2004)								
WBS		May 2004 Review EAC (\$M)		Nov 2004 Review EAC (\$M)				
1.02 Project Support		75.1		72.7				
1.03 Front End Systems		20.8		20.8				
1.04 Linac Systems		316.8		314.0				
1.05 Ring & Transfer System		142.4		144.0				
1.06 Target Systems		109.0		111.5				
1.07 Instrument Systems		63.5		63.8				
1.08 Conventional Facilities		379.9		388.3				
1.09 Integrated Control Systems		59.8		<u>59.8</u>				
EAC		1,167.4		1,174.9				
Contingency \$		25.3	20.8%	17.8	20.1%*			
	TEC	1,192.7		1,192.7				
R&D		100.0		100.0				
Pre-Ops		119.0		119.0				
	OPC	219.0		219.0				
	TPC	1,411.7		1,411.7				
* Based on EAC and actual costs and awards through September 30, 2004								

Major SNS parameters		
Proton beam power on target	1.4 MW	
Proton beam kinetic energy on target	1.0 GeV	
Average beam current on target	1.4 mA	
Pulse repetition rate	60 Hz	
Protons per pulse on target	1.5x10 ¹⁴ protons	
Charge per pulse on target	24 μC	
Energy per pulse on target	24 kJ	
Proton pulse length on target	695 ns	
Ion type (Front end, Linac, HEBT)	H minus	
Average linac macropulse H- current	26 mA	
Linac beam macropulse duty factor	6 %	
Front end length	7.5 m	
Linac length	331 m	
HEBT length	170 m	
Ring circumference	248 m	
RTBT length	150 m	
Ion type (Ring, RTBT, Target)	proton	
Ring filling time	1.0 ms	
Ring revolution frequency	1.058 MHz	
Number of injected turns	1060	
Ring filling fraction	68 %	
Ring extraction beam gap	250 ns	
Maximum uncontrolled beam loss	1 W/m	
Target material	Hg	
Number of ambient / cold moderators	1/3	
Number of neutron beam shutters	18	
Initial number of instruments	5	
CPN/S		32

SNS beam evolution parameters											
		Front En	d		Li	nac			Ring		
	IS/LEBT	RFQ	MEBT	DTL	CCL	SCL (1)	SCL (2)	HEBT	Ring	RTBT	Unit
Output Energy	0.065	2.5	2.5	86.8	185.6	391.4	1000	1000	1000	1000	MeV
Relativistic factor	0.0118	0.0728	0.0728	0.4026	0.5503	0.7084	0.875	0.875	0.875	0.875	
Relativistic factor y	1.00007	1.0027	1.0027	1.0924	1.1977	1.4167	2.066	2.066	2.066	2.066	
Peak current	47	38	38	38	38	38	38	38	9x10 ⁴	9x10 ⁴	mA
Minimum horizontal acceptance			250	38	19	57	50	26	480	480	πmm mr
Output H emittance (unnorm., rms)	17	2.9	3.7	0.75	0.59	0.41	0.23	0.26	24	24	πmm mr
Minimum vertical acceptance			51	42	18	55	39	26	480	400	πmm mr
Output V emittance (unnorm., rms)	17	2.9	3.7	0.75	0.59	0.41	0.23	0.26	24	24	πmm mr
Minimum longitudinal acceptance			4.7E-05	2.4E-05	7.4E-05	7.2E-05	1.8E-04		19/π		πeVs
Output longitudinal rms emittance	9	7.6E-07	1.0E-06	1.2E-06	1.4E-06	1.7E-06	2.3E-06	-0	2/π	9	πeVs
Controlled beam loss; expected	0.05	N/A	0.2	N/A	N/A	N/A	N/A	5°	62°	58°	kW
uncontrolled beam loss; expected	70	100'	2	1	1	0.2	0.2	<1	1	<1	W/m
Output H emittance (norm., rms)	0.2	0.21	0.27	0.33	0.39	0.41	0.41	0.46	44	44	πmm mr
Output V emittance (norm., rms)	0.2	0.21	0.27	0.33	0.39	0.41	0.41	0.46	44	44	πmm mr
Note	a) corres	nonding	to 27% cl	honned h	eam						
, indic	b) corres	ponding	to 5% ch	opped be	am						
	c) beam	loss on t	he transv	erse and	momentu	m collima	ators				
	d) includ	ing total	4% of bea	am escap	ing foil a	nd 0.2% b	eam loss	on collima	ators		
	e) includ	ing 4% b	eam scat	tered on t	he target	window					
	f) corres	ponding t	o 20% be	am loss a	averaged	over RF0	2 length				
CPNS											42

Source of beam loss	
 High radio-activation at injection, extraction, collection AGS: up to 100 mSv/hour at localized area High beam loss FNAL Booster (25 - 40%): ramp tracking, debunching-recapturing, transition, aperture! AGS/Booster (20 - 30%): pushing record intensity ISIS (~15%): injection capture, initial ramp PSR (0.3% Full energy accumulation): injection loss 	
 SNS (~ 10⁻⁴ Full energy accumulation): injection loss SNS (~ 10⁻⁴ Full energy accumulation): average uncontrolled loss (1) space-charge tune shift (0.25 or larger) & resonance crossing (2) limited geometric/momentum acceptance (3) premature H- and H0 stripping and injection-foil scattering (4) errors in magnetic field and alignment (saturation, fringe, ramp) (5) instabilities (resistive wall, electron-cloud instability) (6) accidental beam loss (e.g., malfunction of the ion source/linac & misfiring of ring extraction kickers) (7) beam-halo loss during fast extraction. 	
cras-	46

